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Abstract

A general method for reasoning about the behavior of real-time systems is presented
using “hierarchical multi-state (HMS) machines.” The method is based on a parametric
scheduling approach that reduces the problem of verification of safety properties of
concurrent systems to the solution of a set of inequalities. The method is applied to
obtain a very simple solution to the problem of safety of a real-time concurrent mutual
exclusion protocol that has been studied by a number of authors recently.

Keywords — Real-time systems, safety property, specification, verification, schedul-
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1 Introduction

Numerous methods for the specification and verification of real-tiine systems have been
proposed in the recent past. The choice of method is often based on esthetic grounds and
there are no generally agreed-upon criteria for judging specification and verification methods.
In addition, it is difficult to establish links between various techniques because of differences
in how system behavior is represented, what form the constraints or requirements take, how
concurrency is defined, what model of time is employed, what syntactic notation is used,
and what approaches to verification are employed.

A useful tool for establishing a common frame of reference among various specification
and verification methods is the use of common examples. However, it should be pointed out
that relative judgments about different methods cannot be made from a few examples. The
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main advantage is to improve understanding of various approaches and to allow consideration
of problems from different points of view.

Recently, a mutual exclusion protocol attributed to Michael Fischer has been proposed
as a paradigmatic simple example of concurrent real-time behavior [ALP91]. The safety
property of this protocol has been studied in [AL91] using “temporal logic of actions” [AL91]
and in [SBM91] using the notion of “proof outline.” In the former the proof is omitted due
to its length (four pages [ALP91]) and in the latter only part of the proof of a slightly more
general version is presented.

The purpose of this paper is to introduce a general method of verifying safety properties
of a class of real-time systems and to demonstrate how the method can be applied to obtain
a very simple proof of safety of the mutual exclusion protocol discussed above. An important
benefit of our method is that the solution of the problem is reduced to the satisfaction of a
set of inequalities which are relatively straightforward to evaluate. It is hoped that our work
will foster further dialogue among proponents of various verification methods for real-time
systems and will make the field of formal verification accessible to a larger audience.

The specification method used in this paper is based on an integration of parallel and
hierarchical automata and a temporal interval logic, called “hierarchical multi-state (HMS)
machines,” that has been studied extensively during the last few years [GF88, FG89, GF91,

wdla, GI91, G192, Ga91b]. Fundamental ideas of HMS machines arc as follows: (1) state
behavior is represented in terms of automata in which multiple states can be true at a
moment of time, (2) multiple transitions can fire in the automata simultaneously, (3) en-
ablement conditions of transitions are defined in terms of predicates on histories of states
and transitions, expressed in a temporal interval logic called TIL or a variation thereof, and
(4) a state may consist of an HMS machine, including a copy of itself (giving rise to recursive
hierarchies). While most of the research on HMS has been for discrete time, recent work has
extended the basic concepts to the continuous-time domain [Ga91lb). Also, a general alge-
braic framework for embedding “objects” in states was introduced in [G190] that allows very
compact modeling of systems containing many similar entities such tracks, plots or elements
of a real-time database. In this paper, we present a very simple version of this concept to
illustrate the reduction in complexity that is achieved by the use of objects in states. As far
as the verification of properties of real-time systems specified by HMS machines is concerned,
five methods have been developed so far, some of which are interrelated.

Two of the HMS machine verification methods address the verification of a safety property
by extending an HMS machine representing a real-time system with a new “system failure
(SF)” state. The state SF has the property that it becomes true if and only if the safety
property is violated, and once it does becomes true, it can never becoine false again. Thus, to
prove safety, it is sufficient to demonstrate that SF is unreachable, since SF is false originally.
To this end, in [FG89] a correctness-preserving transformation method was presented which
permits the repeated modification of the structure of an HMS machine representing a real-
time system in such a way that (1) the behavior of the specification remains unchanged,
and (2) if the safety property is satisfied in the specification, the corresponding SF state
becomes isolated, thereby demonstrating its unreachability. The second verification method
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in this class, presented in [GI191, Ga91b], employs a model-based theoremn proving approach
using an extension of the semantic tableau method [Fi90| to demonstrate a safety property
through a refutation-based argument.

In {G192] preliminary results on model checking for HMS machines were presented. The
key difference with the traditional model checking approach [CES86] is in the nature of the
computation graphs generated. In particular, in the computation graph of HMS machines,
(1) a node can contain not just the label for a single state that may be true, but histories
of arbitrary finite numbers of states expressed in a subset of TIL, (2) edges may denote
the firing of multiple transitions,(3) finite delays when no transitions fire are represented
conveniently in a parametric form, and (4) nondeterminism has a somewhat more liberal
interpretation. In [GI91] a method of decomposing a computation graph into a number of
smaller interactive paranetric computation graphs for a special class of commonly-occurring
HMS machines was introduced. In general, this reduces the size of the computation graph
enormously and permits a convenient analysis of many properties of interest using simple
algebraic arguments.

The fifth and final previous verification method for HMS machines to be considered
here was introduced in [GF91] and is inherently tied to nondeterminism which is defined
somewhat differently in HMS machines from the standard notion in automata theory and
Petri nets. Standard nondeterminisin arises out of structural considerations when more than
one transition is enabled from a state (or place in the case of Petri nets). For HMS machines,
each transition is labeled as deterministic or nondeterministic, with the interpretation that
an enabled deterministic transition will fire and a nondeterministic transition may fire. Thus,
multiple transitions from a single transition may fire simultaneously. Also, nondeterminism
is a convenient mechanisimn for defining arbitrary delays on transitions. The scheduling-based
verification method of [GF91] assumes that a “plan” or sequence of transitions with arbitrary
delays for each transition is given. By a symbolic execution of such a plan, one can create
a set of integer inequalities that will deterinine if a “schedule” for the plan can be found to
satisfy all the temporal and logical constraints in the specification.

The verification approach to be presented here combines a number of the previous tech-
niques presented above in a more general context. In particular, it employs continuous-time
HMS machines and integrates ideas from the interactive parametric computation graphs of
[G191] with a nonsequential version of the scheduling method of [GF91].

In Section 2 of this paper we present an overview the basic concepts of HMS machines
and in Section 3 we give an outline of our verification method and illustrate it with a simple
example. In Section 4 we apply our verification method to the mutual exclusion algorithm
discussed above. In Section 5 we presert the conclusions.

2 Background and Definitions

We begin by introducing an informal definition of HMS machines. We note that the main
difference between our definition here with most of previous work on HMS machines (as
exemplified, e.g., by [Ga9la|) is in the use of continuous time instead of discrete time. All
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other coucepts are essentially identical in the two types of time domains.

Definition 1 A continuous-time “hierarchical multi-state (HMS) machine” is a triple H =
(Si r‘D) FN)) 'thCTC

1. S is u set of “states,” any number of which may be true or “mnarked” at a moment of
Lime.

2. I'p and 'y are, respectively, the sets of “deterministic” and “nondeterministic” tran-
sitton of H. Each deterministic or nondeterministic transition is of the form

(PRIMARIES) (CONTROL) — (CONSEQUENTS),

where PRIMARIES C S, CONSEQUENTS C S, and CONTROL is a predicate on the
history of the states and the transitions expressed in a temporal interval logic called C-
TIL. For a transition u, each state in the associated PRIMARIES (CONSEQUENTS)

set of state will be called a “primary” (“consequent”) state of u. Also, the predicate
CONTROL for u will be called the “control” or “control predicate” of u.

3. A transition is “enabled” at time t if its primary states are all true at the “premoment”
of t (see Definition 2) and its associated control predicate is true at t.

4. At each (continuous) moment of time, all the enabled deterministic transitions and a
subset of the nondeterministic transitions “fire.”

The hierarchical version of HMS machines arises when a state is another HMS machine
itself. An HMS machine is “recursive” if it contains a copy of itself as a state. For the
purpose of this paper, a hierarchy can be considered as a grouping of states. Further details
about hierarchies, including discussion about the use of different clocks at different levels,
can be found in [Ga9la, GI92].

The dynamic behavior of a critical real-time system can be specified in terms of an HMS
machine by representing its attributes as states, with the control predicates defining the
logical and temporal constraints under which changes in the system must or can occur. Ex-
tensive arguments on the advantages of HMS machines over traditional finite-state machine
or Petri net representation schemes can be found in [Ga91a]. Principal advantages are in
reduced number of states, hierarchical decomposition, accommodation of different granulari-
ties of time, representation of systems at multiple levels of abstraction, and a richer language
for defining temporal constraints. In addition, there exist a variety of methods for verifying
a very general form of (non-probabilistic) “safety” that, at least in the hard real-time case,
subsumes various concepts of dependability such as guaranteed service, fault-tolerance and
even security.

We now present a notation and a formal definition for the temporal interval logic C-TIL,
the continuous version of the discrete-time interval-based temporal logic TIL which has been
studied extensively in previous work on HMS machine theory. A slight variation of C-TIL




was introduced in [Ga91b]. As evidenced by |[K090, NS91], interest in the use of continuous
time for modeling real-time systems has grown considerably in recent years. One additional
change from most of the previous work on HMS machines is that, following the approach
of [FGB9], we include in our definition “transition-based” control predicates in C-TIL that
simplify the definition of synchronization constraints on the firings of transitions.

Notation Given an HMS machine H = (S,I'p,I'n), the “marking” of H at time t is a
mapping M, : SUTp U N — {F,T} that defines the set of marked or true states of H and
the transitions that fire at time t.

Definition 2 Given a marking M, of an HMS machine at time t and a formula v, we denote
the satisfiability of 1 in M, by M, |= . C-TIL then in obtained by extending propositional
logic with the following five operators:

O(t') At relative time t/

ltl, tg] Always from ty until to
M, f: It],tgl’d) < Vit L < t’ <ts zmplzes M, ’: O(t')¢
Oo(t) At premoment of relative time t'

M, = O(t"" )y & Je > 0 such that |t — ¢, t]y
<ty, ta> Sometime from t; until t2

M, r:<t1, >y & 3t such that t; < t <ty A M, }: O(t,)lﬂ
<ty, t>!  Sometime-change from t, until t,

M, <ty t;>1 < ' such that

((t|) <t< tz) A (M¢ I: O(t'_)"ﬂﬁ) A (/Wg l:<tl,t2> 1/))

Definition 3 For each state s in an HMS machine, let I'iy(s)(Towe(S)) be the set of transi-
tions into (out of) s. Then, the marking of s at time t is defined as follows:

O(t)s & (O(t7)s A (Aueroue(s) O() 1)) V (Vier, (s O(t)v),
where for a function ¥, Apex (@) =T if X = {} and V,ex ¥(z) = F if X = { }.

Intuitively, a state s is true at time ¢ if and only if (1) s is true for a non-zero interval
ending at t, where the interval is closed on the left and open on the right, and no transitions
fire out of it at ¢, and/or (2) some transition fires into s at time ¢. A transition is true at
time t if and only if it fires at ¢.

Figure 1 presents our graphic notation for a a simple HMS machine that will be used
in the next section to introduce our scheduling-based verification method. In our notation,
boxes represent states, dark arrows denote transitions with an asterisk indicating that the
transition is nondeterministic, thin arrows represent controls, and temporal operators appear
next to the symbol (T). VLSI notation is in general used to form logical combination of
control predicates and multiple controls on a single transition represent the conjunction of
the individual predicates. Thus, the nondeterministic transition z in Figure 1 may fire at
time t if O(t™)A and |-2,0]4A A [-3,2]C A |-1,0]D.
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Figure 1: A Simple HMS Machine Denoting a Parallel Scheduling Problem

3 A Scheduling-Based Verification Method

Given an HMS machine with nondeterministic transitions such that of Figure 1, one can
define a “plan” as a sequence of sets of transitions that can fire one after the other, with delays
between successive firings denoted by terms of the form ¢*, where ¢ represents no action and
i is the length of the delay. For example, for Figure 1, a possible plan is p = ¢*y¢’z, which
consists of a wait of i tie units, followed by the firing of the transition y, followed by a
wait of j time units, followed by the firing of the transition x. By finding a solution for i
and j that satisfies all the control predicates for y and z, one obtains a “schedule” for p. In
[GF91], a general method was presented in the discrete time domain for determining choices
for the parameters ¢ and j that would resuits in feasible solutions for p. The demonstration
of the infeasibility of the plan p proves safety if p is the only path to an unsafe state.

The scheduling method of [GF91] is based on a parametric execution of plans that com-
pares the constraints defined by control predicates to parametric facts that can be deduced
during the execution of the plan. This method was used there to derive schedules for the
operation of a steam generator monitoring system. The details of the method will not be
repeated here.

In this paper, we consider threc modifications of the scheduling method of [GF91|: (1)
continuous time is used instead of discrete time, (2) multiple concurrent plans are employed,
resulting in significant reduction in complexity for many applications, and (3) the evaluation
of facts during the execution of plans are simplified by adopting a variation of lazy evaluation.
The basic ideas will now be illustrated for the example of Figure 1.

We assume that initially the states A and C are marked in the HMS machine of Figure
1 and we wish to find a schedule for the firing of the transitions z and y that would satisfy
the controls on x. We consider the pair of parametric plans ¢z and ¢°y. The term ¢* (¢*)
in the first (second) plan defines a delay of a (3) before the firing of x (y).

According to the scheduling method of [GF91], which can be generalized to the continuous
case for multiple plans, at each step of the execution of a parametric plan, we compare known
facts with the required facts, the former derived by the execution of the plan and the latter
from the control predicates of the transitions in the plan. The basic idea is that if for a




state s we know that [a,, 3]s is true and we also have a requirement that |ap, B2|s must
be true, then we can conclude that |as, 3] C |ay, 3], where brackets are used simply to
represent intervals. From this we can derive the two inequalities a; < az and 31 > f.
One additional improvement on the application of this concept to be considered here is that
instead of considering all the known facts as in [GF91], here we limit our analysis to only
relevant facts in the spirit of lazy evaluation.

The transition y in Figure 1 has the null control predicate and does not impose any
constraints on the parameters a and 8. When the transition z fires at relative time zero in
the plan ¢z, we have the following facts using the rules of [GF91]:

[~a,0|AA [—a,—a+ BIC A|-a + 6,0|D

We now consider the control predicate [—-2,0]A A |-3,—2]C A |-1,0]D of the transition
z. By comparing the known facts with the three terms in this predicate, we can derive a
set of inequality constraints on the delays a and 8. The the relevant inequalities derived for
each term of this control predicate are underlined below:

[—2,0]A: {—2,0] C [~a,0] =
a> 2

[-3,-2|C:  |-3,-2]C|-a,—at f]=>~a< -3, -at+f>-2=
a>3,alf+2

[-1,0]D: [-1,0]C [~a+6,0)= —a+ < -1
a>pB+1

Irom underlined inequalities we immediately conclude that 3 > 1, > 3, and § + 1 <
a < #+ 2. Thus, we obtain a complete set of permissible schedules for the execution of the
transitions y and . The same principle will be used in the next section to determine the
conditions under which one can construct a feasible schicdule for a set of plans that leads to
the violation of a safety property.

4 Verification of a Mutual Exclusion Protocol

We now consider the application of the scheduling-based verification method of the last
section to the problem of verifying a mutual exclusion protocol attributed to Michael Fischer.
As mentioned in the Introduction, this protocol has been studied in [AL91], while a slightly
more general version has been considered in [SBM91|. This protocol consists of a number of
processes such that each process ¢ executes the following code:

await (z - 0);
(€= 1)

await (z = i);
cs: critical section
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Process 1 _ ‘ Procass 2

<= A0»!

[-5,0}

CS CS,

1

Figure 2: Two Interacting Processes in Fischer’s Mutual Exclusion Protocol

In each process ¢ there is a maximum delay A between the execution of the test in statement
a and the assignment in statement b, and a minimum delay 6 between the assignment in
statement b and the test in statement c¢. The safety property we want to verify is the
following: what conditions on the parameters A and é will guarantee that only one process
can be in its critical section cs at one moment of time. As noted in [ALP91}, the protocol is
incomplete sinee it allows lockout of processes. This can easily be remedied, however, and
it does not affect the proof of salety.

We can formalize the protocol for two processes, which we call Process 1 and Process 2,
in terms of the HMS machine of Figure 2. 1t is easy to see that it is sufficient to prove safety
for just two processes. The state A; corresponds to statement a in the list of statements for
process i above, states B; and B/ correspond to statements b, and so on. All the transitions in
the two processes are nondeterministic (indicated by the asterisks next to the arrowheads),
permitting arbitrary delays between successive step. On the other hand, the transitions
among the global state x = 0, = 1, and £ = 2 are all deterministic. Initially, states A,,
Ay, and z = 0 are marked as indicated with the solid small circles. Considering Process 1,
Y1 can fire as long as x = 0 is true. The transition 2, can fire if B, has become true during
the last A time units (indicated by the sometime-change operator), and if z = 0 is true.
Similarly, w, can fire if B has been true for at least § time units and = = 1 is true. The
negative control on transition z is merely a device to prevent the simultaneous firing of z;




Figure 3: Specification of Fischer’s Mutual Exclusion Protocol with Objects in States

and zo.

Figure 3 presents an alternate and simpler HMS machine specification of the Fischer’s
protocol using “objects” in states following [GI90]. In this case, the state X actually contains
the variable X that can be modified as transitions fire from X. We also assume an interleaving
operation of this specification in order to avoid the need for an additional control as in Figure
2. The following proof can be applied to both Figures 2 and 3.

We consider the possibility that, starting from the initial condition, both critical sections
become true - actually, we only need to assume that C; and C, become true. This implies
that the following two plans must both be feasible:

P = " y1d™ 2P w,
D2 = Y20 2202wy

Since w, and w;, cannot fire simultaneously, without any loss of generality, we assume that
p1 completes before p,. We can then derive the following inequalities from the constraints
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on the transitions:

(1) m+a +8 <y +a Since when w fires z; has not fired yet.

(2) 12<m t o Because, otherwise, y, cannot fire.
B) oy <A By definition.
4) Bh=>6 By definition.
(8) B> By definition.
6) ax <A By definition.

Adding the inequalities (1) and (6), we get v1 + a; + fi < A + 1. Rewriting (4) as
6 < (3 and adding it to the sum of (1) and (6), we get 1 + a; + 6 < A + v2. Adding this
to (2), gives us 6 < A, which is a necessary condition for the violation of the desired safety
property. Therefore, to guarantee that the safety property will not be violated, it is sufficient
to have A <§. This is identical to the safety condition stated in [AL91].

5 Conclusions

In this paper, a scheduling-based method for verifying safety properties of real-time systems
specified in terms of “hierarchical multi-state (HMS) machines” was presented. The method
was applied to obtain a very simple proof of safety of a mutual exclusion protocol that has
been studied by several authors using other techniques. An important advantage of our
method is that proof of safety is reduced to the solution of a set of inequalities which are, in
general, relatively easy to evaluate. Since the notion of safety is rather general, the method
can be applied to verify the trustworthiness and dependability of real-time systems from a
wide set of perspectives.
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